PHYSICAL REVIEW E VOLUME 54, NUMBER 4 OCTOBER 1996

Energy loss of correlated ions in plasmas: Collective and individual contributions

E. M. Bringa and N. R. Arista
Centro Afanico Bariloche and Instituto Balseiro, ComisidNacional de Energ Atamica, 8400 Bariloche, Argentina
(Received 27 November 1995; revised manuscript received 13 May) 1996

Interference effects in the energy loss of correlated ions in plasmas are studied using classical and quantum
models for the dielectric response of the medium. The study covers the ranges of interest for inertial-
confinement fusionZ pinch, and Tokamak plasmas. The relative contributions from collective and individual
excitations are evaluated, both for single and correlated ions. We derive analytical approximations for each of
these terms. We find that collective excitations give a small contribution to the energy loss of single ions, for
a wide range of plasma conditions, but produce the largest contribution to the interference effects for correlated
ions. The differences of using classical or quantum cutoff parameters for the stopping and interference terms
are analyzed. Numerical calculations of the interference effects for various cases, pertaining to the interaction
of ion beams with fusion plasmas, are presenf8d063-651X96)01709-9

PACS numbgs): 52.40.Mj, 34.50.Bw

I. INTRODUCTION Il. FORMULATION AND PARAMETERS

2
W(J), @

. . . The stopping powelS=—dE/dx (energy loss per unit
One of the most .relevant processes in the interaction b '?th Iengtbupgf zgp%int particle with éhargg{: and vpelocity
tween charged particles and plasmas is the phenomenon Fin a medium characterized by a dielectric functigk,),
the energy loss of the particles, due to localized collisionsy, tarms of the wave vectdc and frequencyw, is given by
and excitation of collective modes in the plasma. In particu-[4,5'8]
lar, this problem is of interest for current fusion research, like
the heating of Tokamak plasmas with atomic bedfds or 2(2e)? [/dK| [k 1
the use of high-intensity ion beams as drivers for inertial- =725 = 5 f (_)f o dw Im( )
confinement fusion(ICF) studies[2,3]. Various aspects of Y ol k/Jo e(k,w)
this problem have received considerable attention. @

On the other hand, the use of ion clusters has been pro-
posed more recently, as an alternative mechanism to deposit In the case of a classical plasma, the dielectric function
a concentrated amount of energy in the medium. Earliean be conveniently parametrized as
studies with molecular ions had shown that the energy loss
of correlated ions in matter could in fact be enhanced, or b
diminished, by classical and quantum-mechanical interfer- €(k,w)=1+(?
ence effect§4,5]. The same mechanism was considered to
gﬁjsltrgf; ﬁgﬁalgti:;ev;?hs (feugifo\r/\egagrfiﬁgsg. lon beams or Ior\]/vhereW(g) is the plasma dispersion functi¢8], and

The purpose of this work is to analyze in detail the energy
loss of both single ions and correlated ions in plasmas of _(otiy)op 3
various densities and temperatures. The study is formulated £= kikp '
in terms of the dielectric formalism for classical collisionless
plasmas and includes calculations using also the quantuihere we shall take the limig—0 for collisionless plasmas.
random-phase approximatiofRPA). Collective and indi- We introduce here some useful quantities: plasma fre-
vidual modes are taken into account in the spirit of thequencywp , thermal velocity 1, Debye length\y , and wave
Bohm-Pines modéll6,7], and the contribution of each mode numberky, given as usual by
is calculated. We develop analytical approximations for
small and large velocities, and compare them with numerical

e e 47npe? kgT) 2
calculations in cases of special interest. wgzw_", UT:(L) , Ap= o . kp=\ph
In Sec. Il we give a short review of the dielectric formal- m m wp
ism, and of the main parameters of the problem. In Sec. lll 4)

we consider the calculation of collective and individual con-

tributions, and discuss several approximations. In Sec. IV wavheren; is the plasma electron density afds the electron
analyze the stopping of a dicluster, obtaining results for théemperature.

interference effects and comparing with numerical integra- In the following, the stopping power expressions will be
tions; we obtain analytical approximations and derive agiven in atomic units.

simple scaling law for the interference function. The main By separating the real and imaginary part&\{fz) = X(z)
conclusions of this work are summarized in Sec. VI. +iY(2), we can write the stopping integral as follows:
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Zw% < k3dk (olvr TABLE I. Some representative values of the main parameters
= J - f z dz for Tokamak,Z pinch, and ICF plasmas. The valuestnf,, have
mv® Jo kp Jo been calculated for typical velocities=1, 7.5, and 35 a.u., respec-
Y(2) tively.
x ? ? ©® Tokamak Z pinch ICF
| tX@ | Y@ P
b np (L/cnt) 102 10'8 3x10%
—6 —3
in terms of the variable=w/kv; (0<z<v/vy). Expres- @p (@) 4.31x10 1.36x10 0.236
sions for the function(z) andY(z) are given in the Ap- T (&) 1000 20 300
pendix_ vt (a.u) 6.06 0.857 3.32
To avoid logarithmic divergences in this integral for large Mo (@.u) 1.40¢10° 630 14.1
k, a cut off kyu=1/b,, must be introduced. The origin of bmax (@.u) 2.32x10° 5.50x10° 148
this cutoff is due to the limit of applicability of the dielectric T/Tg¢ 5.91x10° 5.49x10° 85.3

approach to treat short-range interactighg,;,<r <ip). In

fact, there are two limiting values fdt,,,, that should be

considered: one from a classical and one from a quantum- ] o ) ]

mechanical origin. This question has been discussed in detdiP that the classical collision regime is the one Tor T,

previously[9] using a description of short-range interactionsand the quantunfperturbation regime is that folf>T.

based on quantum scattering theory, so that we give here We note also that, due to the additio@atependence of

only a brief discussion. the classical cutoff valukﬂax Eq. (6), the value of the stop-
The quantum(perturbation theoryvalue is usually de- ping termS; in Egs. (1) and (5) does not agree in general

rived in the high-velacity limit of the Born approximation, with the proton stopping powes, . Only when the quantum

where the value ofik represents the momentum transfer, kg{gx value is used doeS, become identical 1S, . The dif-

and therefore kin, =1/l =2mu/fi. The classical value ference between both values may be specially significant for

arises from a treatment of close electron-ion collisions usinghe case of highly charged ions.

a Coulomb potential, where the |Im|t|ng value is the collision The other important parameter in this pr0b|em is the

radius bfy,=Ze?/mv?, which yields an upper limit to the |ength b, representing the effective range of the interac-

wave vector: k3, =1/b%,. The way these considerations tions between the external particle and the electrons in the

can be generalized when the ion velocity is comparébte  medium. The value ob,,,, depends on the particle velocity.

smalle) than the mean electron velocity has been considered; |ow velocities @<vq) the interactions are very effi-

in Ref. [9]. We can summarize the results by the following ciently screened within a Debye distance, andgg,is well

limiting values: represented by the Debye length=v+/wp . In the opposite
Classical casd 7>1): case of high velocitieso(>v+), the screening is modified by

dynamical effects and the induced potential develops an os-

o M _ cillatory behavior behind the position of the moving ion
Kmax™ %2 (o). (6) (wake potentia[11]). The effective range of the interactions
in this case is given by the “dynamical screening distance”
Quantum casézn<1): bna=v/wp. The wavelength of the wake is relatedlig,,

simply by Ayake=2 7D max-
om To illustrate the ranges of interest for practical applica-
kﬂ{QXET (v+uy). (7)  tions, we show in Table | some typical values of plasma
densities and temperatures, and the corresponding values of
Ap andb,,, (for ion velocitiesv =1, 7.5, and 35 a.u.for the
cases of TokamakZ pinch, and ICF plasmas.
In the following, the parameters shown in Table | will be
taken as representative values, in order to estimate other

qm 2 » .
_ kmaxg |Z|e ) quantities of interest for each case.
7 Khax hUr

The parameter that indicates the applicability of the clas
sical or quantum cases is the Bloch parametedefined by

in terms of a relative velocity, given byv 2=v2+v 2.

From these equations we can see thatkthg value to be IIl. STOPPING POWER OF SINGLE IONS
used in Eq.(5) is always the smaller of botk&., and
Kiax- The transition between both cases depends on the Tpe first problem to be considered now is the evaluation
chargeZ of the test particle, and the relative velocity. of the energy loss, using the dielectric formulation, for the

An important example is that of a slow test particle
(v<vy), where one finds that the transition occurs at
plasma temperature.O]:

simplest case of a single ion moving in the medium.

& The calculation of th&, term can be handled in a conve-
nient way by integrating first over the variatitein Eq. (5).
Then, the problem reduces to evaluate a single integral over

T.=Z?%x10° K (9)  the variablez= w/kv, namely(cf. Refs.[8, 12])
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24} ' T ' ]
2 wP>2fU/vT (kmax) 22-_
=—|— dz zY2z)| In 21 1
> 77( v 0 s Kp 20t ]
% 2 2D 2 18l ]
1+ .2 X(Z) + 2 Y(Z) o~ 18 -_ L(X) _.
4 [X(2)°+Y(2)%] S 1
X 12 A
! F,(x)
0k s 4
X@ [ r(kéaxk%+X(z>) t ’(X(Z)H % osf - ]
- an ——- ——| —arctan o— [ ]
2Y(2) Y(2) Y(2) 06 L o ]
(10 oal , ]
r ]
in terms of the functionX(z) andY(z) given in the Appen- er el 20
dix. 0.0 ' . . o ]
0 1 2 3 4 5

A. Individual and collective modes

The integrals in Eqs(5) or (10) for Sy, can be separated FIG. 1. FunctionsL(x), F1(x), and F,(x), pertaining to the
in collective (0<k<k.) and individual(k,<k<Kk,,) terms  analytical approximations of the stopping and interference terms in
according to the Bohm and Pines the6y7]. The value of Egs.(12), (16), (30), and(35).

k. separating both regimes is usually taken as the Debye
constankp=1/\p . and it is shown in Fig. 1.

The criterion to fix the value ok, was studied in more In the limiting case ofv/v;—», we getF,(v/vy)—1,
detail from the properties of the dielectric functietk,w); a  and therefore
discussion of this point is given in the Appendix. In practice,
since the values of the stopping integrals depend in a loga- )
rithmic way onk., the approximatiork.=kp can be consid- Sy= ( “’P) In
ered satisfactory for the present calculations.

Therefore, we separate the collective and individual con-
tributions in Egs.(5) and(10) as follows:

; (14

wherek,in=wp/v =1/, iS a dynamical screening param-

ko Kimax o eter that is determined by the dielectric model.
So=f f(k)dk+f f(k)dk=SP+s0.  (11) If the quantum-mechanical value kf,,.=2muv/% is used
0 ko one obtains the well-known Bethe expression for the colli-

: . sion logarithm: In(2nv?/%wp), whereas if the classical
The calculation of the stopping pow&, may be per- value of k,.=mv%|Z|e? is used, one gets Bohrs

formed in a nume_rlcal way by Integration using E&). . expression: Infw?/|Z|e’wp). The transition between both
However, for practical purposes it becomes useful to derive , ; :

) J . values may be described more accurately using the following
analytical approximations for the cases of high and low ve- . ) :
locities expression derived from a transport cross-section approach

[9] (more appropriate to describe close collisions

1. High-velocity approximationdv>uvt)

2
The integrals in Eq(11) may be evaluated analytically by kﬁx — av
using the approximations to the energy-loss functiop-iy In Kmin =In (1+ 22 (19

e(k,w)] given in the Appendi{Egs.(A6) and(A8)].

In this way we obtain: wherea=1.123w/Zwp, B=HITZe?? and'=1.781. In

v general, a reasonably good approximatiot g, is obtained
In(—) O(v—uv7) by always using the smallest of bokfi.,, and k%™ values.
vT We note that th& dependence introduced through the value

)

Kmax v of k., could be important in the case of highly charged ions,
+in| - )®(kmax_ kD)Fl(v_ : (12 when zZe*/hv=1, and the stopping integral depends on
b T ke =mu?|Z|e.
where the first term is due to collective excitations and the
second is due to individual excitations. 2. Low-velocity approximationgv<v)

The functionF ,(x) is given by In this case, excitation of collective modes can not take

112 9 place, so that we consider only short-range excitations. Then
Fi(x)= (E) fxzzexp( —Z )dz, (13) the approximatiorz<1 to the dielectric functiofisee Appen-
T 0 2 dix, Eq. (A7)] may be used.
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FIG. 2. Comparison between analytical approximations and ex-
act integrations of stopping powers for protons. The circles show
the exact results obtained by integration of E§0). The dashed
and solid lines show the high- and low-velocity approximations of 0 1 2 3 4 5 6 7 8 9 10
Egs. (12) and (16). The approximations fov<vt (Spitze) and v (a.u.)
v>v7 (Bethe are also shown.

S, (10%a.u.)

FIG. 3. Calculations of the stopping power teBgin Egs.(1)
The stopping power can be approximated in this case asnd (5) for ICF and Z-pinch plasmas, using the parameters from

follows: Table I. The solid lines show calculations for protons using the
classical dielectric formulation with a quantum value kgf,,; the
12\ 1 (Kia| [V v dashed lines show calculations for ions with effective chatge
3l E L kp /\v7 Fa vy’ (16 using the classical value &f,,,. The symbols show the results of

the quantum RPA calculations for low and high velocities.

whereL (x) is the low-velocity collision logarithm

) The typical behavior of the stopping with velocity is ap-

1 X preciated: a linear velocity dependence #otv (Spitzer
- 2y _ T
LX) =3 |In(1+x%) (1+x9) 17 regime, a maximum aw,,~2v+, and a nearly quadratic
decrease with velocity fos >v (Bethe regimg A charac-
and teristic value for the stopping power is given by the value at
the maximum
3 (x, (-7
Fa(X)=—3 f z exp(—)dz. (18) Zewp\?  4wZ%np
X" Jo 2 ~ ~Cg————=—— (20
ax S ]
vT kBT

The functionsL(x) and F,(x) are shown in Fig. 1. In
particular, we find the following limits: F,(x)—1, when  where the coefficient varies weakly with density and tem-
x—0, andF,(x)—0, whenx—sco, perature(its value ranges between 0.8 and 2.5 for all the

For v<vy, kmax does not depend on, and the depen- cases studied here
dence of the stopping power with velocity is linear. A simple It is of interest to compare the present results, using a
result in this limit was first obtained for classical plasmas byclassical dielectric functioCDF), with those calculated us-
Spitzer[13], namely, ing the quantum random-phase approximat{&rA) [14—

16]. The CDF and RPA results nearly coincide for large

4 nv vT T/Te (where Te=Eg/kg is the Fermi temperaturdaf one
SO:§ V2w (kgT)3? L Zwp) (19 yses the quantum value kf,,, from Eq.(7). Figure 3 shows
the RPA results fow<v; and v>vy, according to Ref.
This result is retrieved from Eq16) in the limit v <v+. [16], for the typical ICF andz-pinch cases. The CDF and
The functionxF,(x) in Eq. (16) generates a maximum in RPA results for protons agree very well for these cases of
the stopping, similar to the high-velocity case of Etp). weak electronic degeneracy. However, the resultsZfeb,

where the classical value &f,,, must be used, show a sig-

B. Results of numerical integrations nificant difference with the quantum calculations.

We show in Fig. 2 the values of the stopping power for
protonsS,, in an ICF plasma, as calculated by the numerical
integration of Eq(10) (considered here as the exact vajyes  In Fig. 4 we show the results of separate calculations of
and using the approximations discussed before. Th@  the collective and individual contributions to the stopping
andv <vt approximations are those given by E¢s2) and  power for protons, as well as the total stopping, for different
(16); they provide useful upper and lower estimations to theplasma conditions. In each case, the exact calculations are
exact values in the whole range of velocities. compared with the analytical high-velocity approximations.

C. Analysis of collective and individual terms
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—— —— — (whereb=v/wp andb,,=1/K,4, for a particle with ve-

12 22 .03 J i
T 1o Me=3x10%cm locity v=>5v+.
o gl T730keV In general, we see from Ed21) that the contribution
[} r 1 . .. .
o st . from individual modes will be greater than that from collec-
~ 4r ] tive modes if
o 2r .

0 K 0.0’0“0?....?00.0'.".... 2

7F T M T T T T T T M T : I‘Ebma)bm|n/AD<l- (22)
S ef _ 22 3 S approx. |4
; sk nF: 3x10%em™ | & approx|] . .
o 4f T=300ev | . 5% approx ] It can be seen that the importance of collective effects
N :: . :gxacf ] increases with plasma density and decreases with tempera-
~ - " exact . . .
o b o Soxact 1] ture, being relatively more important for the case of ICF

ol P000000065900 000k vevyervor— plasmagas is well known, collective terms play a very im-

T T T T T . .

~r ] portant role in solid-state plasmfk7]).
z ‘: sy 10 o ] This behavior may be simply explained as follows: tem-
S 6 e g 300 eV ] perature increase the ratio between average kinetic energy
T4 and interaction energy of the plasma particles. This shifts the
o 2 value of \p and then the individual terms increase with re-

0 passoreceesescstIVEITIOTLICTL: spect to the collective ones.

6 1 2 30 4 50 60 As a corollary, this produces a significant departure from

v (a.u.) Bohr’s equipartition rule which states nearly equal contri-
butions from collective and individual stopping terms. This
FIG. 4. Collective and individual contributions to the stopping rule applies to the stopping of particles in solids or in other
power for protons in plasmas of various densities and temperaturedense media. As can be observed from Fig. 5 the contribu-
The solid symbols show the exact values obtained by numericaion from individual collision terms becomes the dominant
integration; the lines show the corresponding approximations, amode of energy loss for the case of singte uncorrelatef
indicated in the inset. ions, through the whole range of plasma parameters of inter-
est.
The simple approximation for the collective modewtted
lines) produces larger stopping values near the maximum, as
compared with the exact results, but the effect on the total

values is not very significant. The energy loss of a pair of charges in correlated motion
To illustrate more generally the relative significance of (adiclustep shows some significant differences with the case
collective and individual contributions to the stopping of un- of uncorrelated particles discussed before. These differences
correlated particles, we plot the lines in Fig. 5, inthe-T  come from interference effects in the simultaneous interac-
plane, corresponding to constant values of the ratio tions of both particles with the mediuf4,5]. For the range
of parameters previously considered, and internuclear dis-
SCOIz IN(Brmax/Ap) 1 - IN(Brmax/Ap) (21) tances of several atomic units, the interferences are generally
S In(\p /bpin) Fa(v/vr)  In(Ap/bpin) more important for the collective-interaction terms, than for
the individual ones. Therefore, the role of collective terms in
this case must be carefully reevaluated.

Let us consider now the interference effects in the energy
loss of a dicluster, formed by two particles in motion through
the plasma with velocity and internuclear distanae We
will assume that both particles have equal charges
Z,=2,=Z.

Using the previous formulation, and following Re#],
the stopping power of a dicluster can be expressed as fol-
lows:

IV. STOPPING OF A DICLUSTER

TeV)

ScoI/Sind
10" _

;/ v=5 vy o
10? ./.4 ol v voed vl el .&’, A Lo

" L A ol i
10" 10" 10" 10™ 10" 10% 10'® 107 10"® 10" 102 102" 10% 102 10**

Suici=2Z Sp+ 1 (1)] (23

in terms of the stopping powes,, defined in Eqs(1) and
(5), and with the interference functidifr) given by[4]

Np (cm'3)
. - . - . 1 (KO -1 .
FIG. 5. Study of the relative contribution of collective and indi- I(N=|z— J’ dk| — | Im{ ———| cogk-r).
vidual modes to the proton stopping power, for wide ranges of 27V k e(k,0)

plasma densities and temperatures, including the ranges of4CF,

pinch, and Tokamak plasmas. The individual type of interactions

are shown to be the dominant mechanism of energy loss through the The expected limits of the functidr{r) and of the diclus-
whole range of interest. ter stopping are the following:
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(i) for r—0: 1(N—S,, tributions from individual and collective modes, so that the

integrall (r) can be approximated by
and S, —(22)?S, (one particle of charge 2),

wp 2 wpl T
(i) for r—oo: 1(f)—0, and Sy—2(Z%Sy) I(r)= 7) Il(T’ E) 6(v—vT)
(two independent particles of chargé). v r
(25) + Fl(;) I 1(E:kmaxr) a(kmax_ kD)
In the usual experimental situations the incident diclusters =1%l(r)+ "), (30)

are randomly oriented, so that one must take the average of _ _ _
the interference term with respect to the anglbetweenr ~ Where Fy(v/vy) is the same function that appears in the

andyv. In this case one obtains high-velocity stopping power formula E¢L3) and
2\ (= dk [sin(kr)| [k -1 jy(sin(z))
== =7 - 1(X,y)= dz=H(x)—H(y), 31
10 (mz) | ( - )fo v do Im(é(k,w)>. 1= | (=5 (0-Hy), (D
(26)

with H(x) defined by
The case where the dicluster is oriented parallel to the _
direction of motion has been studied previously by H(x) = sin(x)
D’Avanzo, Lontano, and BortignofiL8]. More recently, ori- (x)= X
entational effects have also been studi#él]. These effects
may become important for longer time scales than those usu- Forv>v¢ (x>1), F1(x)=1, and we get
ally considered in ICF studi¢8] (for instance, they could be

—Ci(x). (32

important in the case of particle clusters injected in Toka- 1(r) =k 11 (Keninl - Kenaot ) (33
makg. In the following calculations, orientational effects )
will be neglected. wherekKin=1/b—wp/v. Therefore, the functional depen-

Using the dielectric function for a classical collisionless dence of the interference function in this approximation, in
plasma Eq(2) one can write the integral for the interference terms of the beam-plasma parameters, is given only through

termI(r) as follows: Kminl @ndKpaf - _ _
For larger (Kpaf >1), the term withk,,,,, in EqQ. (33) can

2w§ = k3dk [ sin(kr)\ v/vr be neglected. This corresponds to the limit where the inter-

(r)=—3 f K2 ( kr )f z nuclear distance is sufficiently large with respect to the mini-

D 0 mum electron-ion distance of approach in closest collisions,

Y(2) so that the two ions behave as independent scattering centers
X 2 2 . (27)  for this type of short-range collisions.
= +X(z){ +[Y(2)]? In this case] (r) can be further approximated as
D
, _ , 1\ cogr/bmay
The integration over thé& variable may be performed [(r)= b BX) b2 (39

analytically. After some algebra, one can express the func- m (r/Bmay)

tion I(r) as a single integral Since b=v/wp, we find that the temperature depen-

2 [ wol 2/ X vlog dence ifl (r) disappears in this limit. The relevant parameter
I(r)y=— —P) (—D)f z dzIm[F(z,Kmax,") ] here becomes the ratio between the internuclear distance
mAv r/Jo and the wavelength of the wake potentiak,qe
(28 =27b=2mv/wp. This represents the interferences be-
where tween the wakes produced by each of the two particles,
which are separated by the distance
F(Z,KmaxoT) = A{SIN(GO)[ Cil(Krax— A1) + Ci(Krnasc- )T) (b) Low-velocity approximationdJsing now the approxi-
mationz<1 (see Appendixfor the case of ions with veloci-
—Ci(—qr)—Ci(gr)]+cogqr) tiesv<vy, and integrating Eq.27), we get for the dicluster
. _ a low-velocity approximation to the interference term,
X[ S(Knax— @)1~ Sil(Kmat D)1) ey Y aPP
—2Si(—qn)]}, (29 112 v
I(r)=|—=| === l2(r/\p Kmax/kp)| —|F2(v/vT),
with q=q(2)=kpVX(2)+iY(2), and where SK) and ") (w) 3z 210 Kmax D)(UT) 2(vfvr)
Ci(x) denote the sine and cosine integi@g]. We will now (35
obtain approximate analytical results for the interference i
termI(r) in Eq. (28). whereF,(x) has been defined befof&q. (18)] and
(a) High-velocity approximationsUsing similar approxi- .
mations to those considered in the preceding section, for the _ [’ A sin(zx) 2y-2
, . - lo(x,y)=] dz (1+2977 (36)
case of ions with velocities>v 1, we can separate the con- 0 ZX
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(172 SN IR DL D BENL N BN L EENLEN BN N 12T T T T T T T T T
8r 1 11 classical k..., ICF -
41 E o quantumKk... ICF
ol ] 10 | —a&— RPA approx., ICF 1
4 classical k.., | 1 09 - A classical k..., Z-pinch 7]
= sl ° quantumkyg, || a %, o quantum k.. Z-pinch |
= RPA approx. 7)) 08 i g ) _
pprox. \ e —v— RPA approx., Z-pinch
Y] 12 |- 1 ~ N 1
- ) i I ) ) : ) I I —~ o7k |
3 2 4 6 8 10 12 14 16 18 = 7
> 2 =
2 r(10°a. u.) 06 L 1
~ X
'O 12 T T T AL B B
A 05k g
8l ¢ Z-pinch (b) T ’
v v=7.5a.u.

ozl Lt L
01 2 3 4 5 7
L ] r(a.u.)
1 2 3 4 5 6 7
r (104 a. u.) FIG. 7. Ratiosl(r)/Sy, between the interference and the stop-
ping terms, obtained from the integrations of E@8) and(10), for
FIG. 6. Calculation of the interference teitifr) for the cases of the ICF andZ-pinch cases of Table I. The calculations using a
ICF andZ-pinch plasmas, using the values from Table I. The cal-classical and a quantum cutoff value figh., are compared with
culations from Eq(28), using the classical dielectric function, and Similar integrations using the RPA dielectric function.
using both classical and quantum valuekgfy [Egs.(6) and (7)]
are compared with the quantum dielectric formulation arising from
the random-phase approximation.

analyzed below. The figures show a very good agreement

between these results, using either a classical or a quantum

value of Ky

(I, can be solved in term of special functions, but a numeri-_. The ratio! (NS, b_etwgen the interference. and the stop-

cal evaluation is easigr ' ping terms, is shown in Fig. 7, for Iarge velocities and small
Comparison of Eqs(35) and (16) shows that in this value_s ofr. Here we find important differences betyvee_n the

- : . classical and the quantum choicesbqf,=1/Kax- This dif-

limit the interference effects can be parametrized 3erence is produced by the dependefmek,...) of the stop-

follows: 1(r)/Se=12(x,y)/L(y), with x=r/Ap, and ping termS, alone; i.e., the dependence Iff) on K., iS

Y=Knalko- e HF) on kya
In this case, the response of the plasma to the movinaeg“g'ble(':lg' 6), except for very small distances—bpn)

. . . . ; dot shown here.
particles is nearly static, and the dicluster ions are screene We find in these cases an excellent agreement with the
by the _plasma electrons ac_cordl_ng to Debye pOtent.'alsRPA results, provided that in the calculation of the stopping
Hence, interference effects will be important for separatmnsEe

am _ i
r shorter tham\y . The united-ions limit: 1(r)/Sy=1, will rm S, the quantum value dig,,=2mu/# [from Eq. (7)] is
be obtained for very small distancessb,,=1/Kyax [With

used[which in these examples is the correct value according
: ; oo to the Bloch criterion Eq(8), sincen<1 in the high-velocity
k Egs. 7 he | <vtl. . ’ o )
max given by Eqs.(6) and(7) in the limit v <v-] rangg. Moreover, since Bloch criterion yields always the
‘ smallest value ok,,,—and hence the smalleSg—the ratio
A. Results of calculations I(r)/S, is always maximized.

Calculations have been performed using the exact integral
expressions provided by the dielectric formulation. We have
used both a classical dielectric function and a quantum RPA For low velocities and large values(respect tavp), I(r)
treatment14—16. We analyze here the dependence of thetends quickly to zero, and it shows no oscillatory behavior
interference term on the ion distanceand on the dicluster for very large distances. The difference between the classical
velocity v. and the quantum cases becomes here more relevant, as

shown in Fig. 8, forZ=5 in a dense plasma. The present

1. High velocities calculation coincides with the RPA results4—16 when the
guantum value ok, is used. However, we should note that
for conditions corresponding @) ICF and(b) Z-pinch plas- in this (C:Iase(n>1) the correct cutoff is_given by Fhe classical
mas. The interference term has been multiplied by the tactofaluekna=ksT/|Z|e? [from Eq.(6)], which now yields much
(v/wp)? in order to show similar scales in the ordinate axis;/arger values for the ratib(r)/Sp, as shown in Fig. @®).
we note however the very different scal@setween the
Z-pinch and the ICF casgm the abscissa values. The simi-
lar shapes of the results in both casdsy-and (b)—suggest In the range of high velocities>uv the energy loss is
the existence of a simple scaling rule, a point that will bepartitioned in individual and collective excitations. As dis-

2. Low velocities

The behavior of the interference tetnis shown in Fig. 6,

B. Collective and individual contributions
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FIG. 10. Scaling of the interference terrfr), as predicted by
the high-velocity approximation of Eq38), using the results of

FIG. 8. Calculations of the interference tetr) [part(@)], and  ,merical integrations of Eq28), for ICF, Z pinch and Tokamak
ratios | (r)/S, [part (b)], in the low-velocity rangdv =0.1v7), vs plasmas.

internuclear distance, for correlated ions with chargé=5. The
RPA results agree with those obtained using a quantum cutoff valu
for khax, but the correct results in this case are those correspondins
to the classical cutoff valud€qg. (6)], shown by solid circles.

articular, the interference effect for=5000 a.u. is com-
letely dominated by collective modes.

. o ) C. Scaling of the interference function
cussed beforgcf. Fig. 5, the contribution of collective

modes represents usually a small fraction of the stopping Let us finally consider a simple scaling property of the
term$S. However, in the integration of the interference tdrm Interference functior(r) in the limit of high velocities. Ac-
the contribution of collective modes becomes very impor-cording to Eqs(31) and(33), with bya=v/wp
tant. We show in Fig. 9 the separate contributions from each o ;
P
[ -4ls |
v Brmin

2
mode, | ., and l;,4, for internuclear distances=100 and |(r):(ﬂ)
5000 a.u. We find that the contribution of collective modes v
Due to the rapid decay of the functidi(x) for x>1, Eq.
(32, in many cases we can neglect the second term

(37)

becomes most important for large internuclear distances. In

H(r/byy in Eq. (37) (this is particularly true for swift
atomic clusters, where the valuesrofire of the order of a
few atomic units—or much larger if Coulomb explosion is
considered,—while the values of both{ ~A/2mv and
b, ~Z&/mv? decrease with velocily Therefore, we can ap-
—~ proximatel (r) in the limit r>b,,,, by
35
© 2
A I(r)= E) H(rw—P> (38
Nl v 1%
= lng» (=100 .U, _ _ _ o
=r Iy, =100 2., To illustrate this relation, we show in Fig. 10 a set of
----- hota» =100 2.U. 1 calculated values ofvf wp)?I(r), for different beam and
2 A 102§, r=5000au. plasma parameters, including ICE, pinch, and Tokamak
® 1021, r=5000 a.u. plasmas. The values are rescaled in terms of the variable
.l ——10% 1y, <5000 a0 | Xx=rwplv. The simple(asymptoti¢ approximation: H(x)
’ ~cos(x)/x? gives also very good results in this rangexof
S values. Therefore, we can now explain the similarity noted

earlier, between Figs.(& and b), as a consequence of this
scaling property.

FIG. 9. Collective and individual contributions to the interfer- ~ The physical content of this property should be clear from
ence terni (r) for internuclear distancas=100 and 5000 a.u., as a the previous discussions. For high velocities, the main scale
function of velocity. The collective contribution becomes dominantof distance is the characteristic length of the wake
for the largest distance. Make=2mv/wp. Therefore, the ions interact appreciably

v (a.u.)
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The energy loss of single and correlated ions in plasmas APPENDIX
has been studied both numerically and analytically for vari-
ous plasma conditions, showing in detail the influence of the In this appendix we summarize some properties of the
most relevant parameters. The use of a classical dielectri@ielectric function of classical plasmas and discuss in more
function allows a Simp'e integration of the Stopping powerdeta" the Separatlon Of CO”eCt|Ve and |nd|V|dUa| mOdeS.
and interference terms. When the quantum cutoff value of
Kmax 1S Used in the dielectric formulation the results agree 1. Dielectric function for a classical plasma
very well with those qbtalned from thf RF_)A mo‘?'e'- Following the usual approac}v,8], the longitudinal di-

The use of a classmgl cqtoff valu&d.,) in the mtegrals_ electric functione(k,w) is given by
becomes more appropriate in the case of highly charged ions
at low velocities. Important differences may result from the 47782) ( U—;|Z ) ( gfo)
use of inadequate values kf,,,, specially in the evaluation e(k,w)=1+ J dog| ———— || — |,
of the stopping terms. k? w—Ug-kK+iy/ \ IEe

The contributions arising from individual and collective (A1)
plasma modes were analyzed in detail. A more general study ) .
of the collective resonances, as emerging from the classicfhereé Ec=muve/2 and fo=fo(ve) is the Maxwell-
dielectric function, is included in the Appendix. Other con- Boltzmann distribution of electrons velocities. Using the
clusions of interest for the cases of single and correlated ion@arametersop, vy, Ap, andkp from Eq. (4) one finds[7]
are the following: .

(a) Single ions The separation of the energy loss in terms e(k,w)=1+ (‘0+'7)/‘*’p)
of collective and individual modes was studied and previous ' k/kp
approximations were analyzed. We conclude that for a wide L )
range of plasma conditions, including the cases of IZF, For y—0 (collisionless plasmathe functionW(z) can be
pinch, and Tokamak plasmas, the energy loss is dominateRkPressed, in terms of the variabde w/kv+, as follows:
by individual-collision terms. Therefore, Bohr’s equipartition

ko2

> (A2)

rule does not hold for the stopping power of nondegenerate W(2)=X(2)+iY(2), (A3)
plasmas. In general, the contribution of collective modes in- ith
creases with plasma density, and decreases with temperatu\r%.
We find that the contribution from individual modes is — 2\ (2 X2
greater than the one from collective modes if X(z)=1-z exp( T) f dx exp( ?), (A4)
0
I'=bnabmin/A3<1, (399 and
T 1/2 _ 52

whereb,,=v/wp andb,,, =LK, This justifies the use of Y(2)= (E) z eXF‘( > ) (AS)

kinetic-type formulationg9] whenI'<1, because collective
modes can be neglected.

(b) Correlated ionsIn the low-velocity case, the interfer-
ence effects are important only if the distances between both In order to obtain analytical approximations for the en-
ions is similar to, or smaller than, the Debye length. This  ergy loss and interference terms, simple expressions for the
condition is satisfied very well in the case of molecular ionsenergy-loss function Imf 1/e(k,w)] become useful.
injected in plasmaéor the three cases of Tokamakpinch, Using the variable= w/kv 1, the limits of interest are the
and ICF plasmas considered here following:

For high velocities, the interference function scales in a (&) for z>1:
general way with the parametewp/v. Since the value of
D max increasgs with velocity, the interference effects will bg— ( -1 ); m wp[ (w—wp)— 8w+ wp)]; (AB)
come more important, and one can expect large collective elk,w)] 2
effects not only for clusters of ions, but also in some condi-

2. Approximations for e(k,w)

tions, for very intense ion beams. (b) for z<1:

The scaling properties of the interference effects and the
analytical approximations derived here may be useful to -1\ \/; k\?[ z exp(—2%/2) A7
study the collective effects in the energy loss of large ion Meka) |~ V2 ko | [T+ (Kko) 2T (A7)

clusters[21]. Further calculations along these lines will be
reported in a separate paper. Moreover, ifk>kp , this can be further approximated as:
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FIG. 12. Determinations of the resonance frequencies vs wave
vectork. The roots of Eq(A9) were numerically evaluated obtain-
ing complex frequencies, shown here by open cir@eal parj and
00 05 10 15 20 25 30 squaregimaginary part. The small solid circles are the real roots of

ol o €,(k,w)=0. The solid lines show the polynomial approximations to
the real and imaginary parts, given by E&11) with the coeffi-
cients of Table Il. The dashed lines show the analytical approxima-
tions to the real part, given by E¢A12), and to the imaginary part,
given by Eqs(A13) (curve labeled g and(A14) (curve labeled p

FIG. 11. Behavior of the real and imaginary parts of the dielec-
tric function, vs the frequency, for three values of wave vect&r
(a) k/'kp=0.05,(b) k/kp=0.3, and(c) k/kp=1. In casega) and(b)
the plasma resonance occurs é8wp=1[when Rée)=0 and Ire) ) ]
is very smal] as indicated by the arrows. The real partedias no ~ €2~0 and solve only; (k,w)=0. This can be readily done for
zeros at any real frequency flfkp values larger than 0.5336; this smallk (k<kp), such thaz= w/kv;~kp/k is large ande,

is illustrated in caséc), for k/kp=1. becomes very smajkcf. Eq. (A5)]. The behavior ofey(k,w)
and e(k,w) as a function ofw/wp, for fixed values of

-1 7 (ol wp) _ 72 k/kp=0.05, 0.3, and 1, is shown in Fig. 11. Fatkp=0.05

Im( e(k,w)) = E(k/kDF;S ex;{ > ) (A8) and 0.3, the plasmon mode is locatedwédp=1, where in

fact ,~0 ande;=0. On the contrary, we see thatk,o) has
no zeros fork/kp =1 [more precisely, one finds thaj(k,w)
3. Dispersion relation for collective modes has no real roots fok/kp>0.5336.

More generally, exact solutions of the equatigh,w)=0
were obtained numerically. In this case one finds complex
frequenciesw,(K) = w,1(kK) +iw,5(k). The results of this

Collective longitudinal modes in the plasma exist when

e(k,w)=0. (A9)  procedure are shown in Fig. 12, together with the usual ana-
. ) . , , o lytical approximations.
This defines a dispersion relationw=w,(k), which in gen- For calculation purposes, it become useful to have simple

eral yields complex frequenciesiw (k) = w1 (k) +iw2(k).  numerical approximations fap, (k) and w,,(k). We have

Now, for the collective modes to be well defined, their gptained polynomial fittings to these solutions, in the form
decay time must be much larger than the characteristic oscil-

lation time, viz.,
w

r(K)
wWp ZEi &

k )i
ok (A11)

wra(K)|
wrl(k)|<1' (A10)

‘lm[wr(kny:
Re w,(K)]|

The coefficients; of these polynomials are given in Table

The condition w,,(K)/ w,5(k)| ~0.5 defines a criticat value
for collective modes,, such that folkk>Kk_ only individuals
modes should be considered.

For a degenerate electron plasfaaT=0) there exist the
real roots of Eq(A9) for all values ofk smaller thark, (with
k.~ wplvg), and they become complex fer-k. [17]. In the

Finally, it is of interest to compare these results with the

TABLE II. Coefficients of the polynomial fittings for the real
and imaginary parts of the plasma resonance frequen¢k) ac-
cording to Eq.(A11).

classical formulation, where Maxwellian-type velocity distri- Rew,] Im[w,]
butions are introduced, EqGA9) has no solutions for real ' !
frequencies, and hence plasmons are not sharply defineq 1.0 0.016
modes. Nevertheless, EGA6) still remains useful as a first a, 0.3 —-0.47
approximation. a, 1.2 1.72
A first step to obtain the dispersion relation in Maxwellian a, —0.45 —0.42

plasmas is to assume a very small imaginary component
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analytical approximations t@,(k) obtained from a series These expressions describe the so-called Landau damping of

expansion of Eq(A2) for w/k>v+, namely,[8,12] plasma wave$8].
We find from Fig. 12 that the approximation for the real
wri (k) == V1+3(k/kD)2“’p’ (A12) part Eq.(A12) works well in an extended range (up to
JRET-IN 1 k/kD~1._5), whereas Eqs(AlS) and(A14) for the imaginary
K=—|—| —P - part deviate rather rapidly from the correct result. Therefore,
wrZ( ) 8 k/k 3 ex 2(k/k 2] . . . . .
(k/kp) (k/kp) the polynomial approximation of EqA11) gives, in all

(A13)  cases, a more accurate result.
A slightly different approximation for the imaginary part of ~ From these calculations we also find that the ratio

. (K) is the following[12]: | @1(K)/ w;5(k)| becomes-0.5 fork/kp~1.2. Therefore, we
can conclude that the usual cutoff for the collective modes at
| 12 wp 1+3(k/kp)? k.~kp, may be used as a good approximation to separate
wra(k)=— 8]  (klkp)? exp ~ 2(k/kp)2 the regimes of collective and individual excitations in the

(A14) evaluation of the stopping terms.
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