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~Received 27 November 1995; revised manuscript received 13 May 1996!

Interference effects in the energy loss of correlated ions in plasmas are studied using classical and quantum
models for the dielectric response of the medium. The study covers the ranges of interest for inertial-
confinement fusion,Z pinch, and Tokamak plasmas. The relative contributions from collective and individual
excitations are evaluated, both for single and correlated ions. We derive analytical approximations for each of
these terms. We find that collective excitations give a small contribution to the energy loss of single ions, for
a wide range of plasma conditions, but produce the largest contribution to the interference effects for correlated
ions. The differences of using classical or quantum cutoff parameters for the stopping and interference terms
are analyzed. Numerical calculations of the interference effects for various cases, pertaining to the interaction
of ion beams with fusion plasmas, are presented.@S1063-651X~96!01709-6#

PACS number~s!: 52.40.Mj, 34.50.Bw

I. INTRODUCTION

One of the most relevant processes in the interaction be-
tween charged particles and plasmas is the phenomenon of
the energy loss of the particles, due to localized collisions
and excitation of collective modes in the plasma. In particu-
lar, this problem is of interest for current fusion research, like
the heating of Tokamak plasmas with atomic beams@1#, or
the use of high-intensity ion beams as drivers for inertial-
confinement fusion~ICF! studies@2,3#. Various aspects of
this problem have received considerable attention.

On the other hand, the use of ion clusters has been pro-
posed more recently, as an alternative mechanism to deposit
a concentrated amount of energy in the medium. Earlier
studies with molecular ions had shown that the energy loss
of correlated ions in matter could in fact be enhanced, or
diminished, by classical and quantum-mechanical interfer-
ence effects@4,5#. The same mechanism was considered to
be important in the case of very intense ion beams or ion
clusters interacting with fusion plasmas@2,3#.

The purpose of this work is to analyze in detail the energy
loss of both single ions and correlated ions in plasmas of
various densities and temperatures. The study is formulated
in terms of the dielectric formalism for classical collisionless
plasmas and includes calculations using also the quantum
random-phase approximation~RPA!. Collective and indi-
vidual modes are taken into account in the spirit of the
Bohm-Pines model@6,7#, and the contribution of each mode
is calculated. We develop analytical approximations for
small and large velocities, and compare them with numerical
calculations in cases of special interest.

In Sec. II we give a short review of the dielectric formal-
ism, and of the main parameters of the problem. In Sec. III
we consider the calculation of collective and individual con-
tributions, and discuss several approximations. In Sec. IV we
analyze the stopping of a dicluster, obtaining results for the
interference effects and comparing with numerical integra-
tions; we obtain analytical approximations and derive a
simple scaling law for the interference function. The main
conclusions of this work are summarized in Sec. VI.

II. FORMULATION AND PARAMETERS

The stopping powerS[2dE/dx ~energy loss per unit
path length! of a point particle with chargeZe and velocity
v, in a medium characterized by a dielectric functione~k,v!,
in terms of the wave vectork and frequencyv, is given by
@4,5,8#

S[Z2S05
2~Ze!2

pv2 E
0

`S dkk D E
0

kv
v dv ImS 21

e~k,v! D .
~1!

In the case of a classical plasma, the dielectric function
can be conveniently parametrized as

e~k,v!511S kDk D 2W~z!, ~2!

whereW~z! is the plasma dispersion function@8#, and

z5
~v1 ig!/vP

k/kD
, ~3!

where we shall take the limitg→0 for collisionless plasmas.
We introduce here some useful quantities: plasma fre-

quencyvP , thermal velocityvT , Debye lengthlD , and wave
numberkD , given as usual by

vP
25

4pnPe
2

m
, vT5S kBTm D 1/2, lD5S vTvP

D , kD5lD
21,

~4!

wherenP is the plasma electron density andT is the electron
temperature.

In the following, the stopping power expressions will be
given in atomic units.

By separating the real and imaginary parts ofW(z)5X(z)
1 iY(z), we can write the stopping integral as follows:
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in terms of the variablez5v/kvT (0,z,v/vT). Expres-
sions for the functionsX(z) andY(z) are given in the Ap-
pendix.

To avoid logarithmic divergences in this integral for large
k, a cut off kmax[1/bmin must be introduced. The origin of
this cutoff is due to the limit of applicability of the dielectric
approach to treat short-range interactions~bmin,r,lD!. In
fact, there are two limiting values forkmax that should be
considered: one from a classical and one from a quantum-
mechanical origin. This question has been discussed in detail
previously@9# using a description of short-range interactions
based on quantum scattering theory, so that we give here
only a brief discussion.

The quantum~perturbation theory! value is usually de-
rived in the high-velocity limit of the Born approximation,
where the value of\kW represents the momentum transfer,
and thereforekmax

qm 51/bmin
qm>2mv/\. The classical value

arises from a treatment of close electron-ion collisions using
a Coulomb potential, where the limiting value is the collision
radius bmin

cl 5Ze2/mv2, which yields an upper limit to the
wave vector: kmax

cl >1/bmin
cl . The way these considerations

can be generalized when the ion velocity is comparable~or
smaller! than the mean electron velocity has been considered
in Ref. @9#. We can summarize the results by the following
limiting values:

Classical case~h.1!:

kmax
cl >

m

uZue2 ~v21vT
2!. ~6!

Quantum case~h,1!:

kmax
qm >

2m

\
~v1vT!. ~7!

The parameter that indicates the applicability of the clas-
sical or quantum cases is the Bloch parameterh, defined by

h5
kmax
qm

kmax
cl >

uZue2

\v r
, ~8!

in terms of a relative velocityv r given byv r
25v21v T

2.
From these equations we can see that thekmax value to be

used in Eq.~5! is always the smaller of bothkmax
cl and

kmax
qm . The transition between both cases depends on the
chargeZ of the test particle, and the relative velocityv r .

An important example is that of a slow test particle
(v!vT), where one finds that the transition occurs at a
plasma temperature@10#:

Tc>Z23106 K ~9!

so that the classical collision regime is the one forT,Tc ,
and the quantum~perturbation! regime is that forT.Tc .

We note also that, due to the additionalZ dependence of
the classical cutoff valuekmax

cl Eq. ~6!, the value of the stop-
ping termS0 in Eqs. ~1! and ~5! does not agree in general
with the proton stopping powerSp . Only when the quantum
kmax
qm value is used doesS0 become identical toSp . The dif-
ference between both values may be specially significant for
the case of highly charged ions.

The other important parameter in this problem is the
length bmax representing the effective range of the interac-
tions between the external particle and the electrons in the
medium. The value ofbmax depends on the particle velocity.
At low velocities (v,vT) the interactions are very effi-
ciently screened within a Debye distance, and sobmax is well
represented by the Debye lengthlD5vT/vP . In the opposite
case of high velocities (v.vT), the screening is modified by
dynamical effects and the induced potential develops an os-
cillatory behavior behind the position of the moving ion
~wake potential@11#!. The effective range of the interactions
in this case is given by the ‘‘dynamical screening distance’’
bmax5v/vP . The wavelength of the wake is related tobmax
simply bylwake52pbmax.

To illustrate the ranges of interest for practical applica-
tions, we show in Table I some typical values of plasma
densities and temperatures, and the corresponding values of
lD andbmax ~for ion velocitiesv51, 7.5, and 35 a.u.!, for the
cases of Tokamak,Z pinch, and ICF plasmas.

In the following, the parameters shown in Table I will be
taken as representative values, in order to estimate other
quantities of interest for each case.

III. STOPPING POWER OF SINGLE IONS

The first problem to be considered now is the evaluation
of the energy loss, using the dielectric formulation, for the
simplest case of a single ion moving in the medium.

The calculation of theS0 term can be handled in a conve-
nient way by integrating first over the variablek in Eq. ~5!.
Then, the problem reduces to evaluate a single integral over
the variablez5v/kvT , namely~cf. Refs.@8, 12#!

TABLE I. Some representative values of the main parameters
for Tokamak,Z pinch, and ICF plasmas. The values ofbmax have
been calculated for typical velocitiesv51, 7.5, and 35 a.u., respec-
tively.

Tokamak Z pinch ICF

nP ~1/cm3! 1013 1018 331022

vP ~a.u.! 4.3131026 1.3631023 0.236
T ~eV! 1000 20 300
vT ~a.u.! 6.06 0.857 3.32
lD ~a.u.! 1.403106 630 14.1
bmax ~a.u.! 2.323105 5.503103 148
T/TF 5.913108 5.493103 85.3
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in terms of the functionsX(z) andY(z) given in the Appen-
dix.

A. Individual and collective modes

The integrals in Eqs.~5! or ~10! for S0, can be separated
in collective (0,k,kc) and individual~kc,k,kmax! terms
according to the Bohm and Pines theory@6,7#. The value of
kc separating both regimes is usually taken as the Debye
constantkD[1/lD .

The criterion to fix the value ofkc was studied in more
detail from the properties of the dielectric functione~k,v!; a
discussion of this point is given in the Appendix. In practice,
since the values of the stopping integrals depend in a loga-
rithmic way onkc , the approximationkc>kD can be consid-
ered satisfactory for the present calculations.

Therefore, we separate the collective and individual con-
tributions in Eqs.~5! and ~10! as follows:

S05E
0

kD
f ~k!dk1E

kD

kmax
f ~k!dk5S0

col1S0
ind . ~11!

The calculation of the stopping powerS0 may be per-
formed in a numerical way by integration using Eq.~5!.
However, for practical purposes it becomes useful to derive
analytical approximations for the cases of high and low ve-
locities.

1. High-velocity approximations„v>vT…

The integrals in Eq.~11! may be evaluated analytically by
using the approximations to the energy-loss function Im@21/
e~k,v!# given in the Appendix@Eqs.~A6! and ~A8!#.

In this way we obtain:

S05S0
col1S0

ind.S vP

v D 2F lnS vvTDQ~v2vT!

1 lnS kmaxkD
DQ~kmax2kD!F1S vvTD G , ~12!

where the first term is due to collective excitations and the
second is due to individual excitations.

The functionF1(x) is given by

F1~x!5S 2p D 1/2E
0

x

z2expS 2z2

2 Ddz, ~13!

and it is shown in Fig. 1.
In the limiting case ofv/vT→`, we getF1(v/vT)→1,

and therefore

S05S vP

v D 2lnFkmaxkmin
G ; ~14!

wherekmin5vP/v51/bmax is a dynamical screening param-
eter that is determined by the dielectric model.

If the quantum-mechanical value ofkmax>2mv/\ is used
one obtains the well-known Bethe expression for the colli-
sion logarithm: ln(2mv2/\vP), whereas if the classical
value of kmax>mv2/uZue2 is used, one gets Bohr’s
expression: ln(mv3/uZue2vP). The transition between both
values may be described more accurately using the following
expression derived from a transport cross-section approach
@9# ~more appropriate to describe close collisions!

lnFkmaxkmin
G> lnF av2

~11bv2!1/2G , ~15!

wherea51.123mv/Ze2vP , b5~\/GZe2!2, andG51.781. In
general, a reasonably good approximation tokmax is obtained
by always using the smallest of bothkmax

cl and kmax
qm values.

We note that theZ dependence introduced through the value
of kmaxcould be important in the case of highly charged ions,
when Ze2/\v>1, and the stopping integral depends on
kmax
cl >mv2/uZue2.

2. Low-velocity approximations„v<vT…

In this case, excitation of collective modes can not take
place, so that we consider only short-range excitations. Then
the approximationz!1 to the dielectric function@see Appen-
dix, Eq. ~A7!# may be used.

FIG. 1. FunctionsL(x), F1(x), and F2(x), pertaining to the
analytical approximations of the stopping and interference terms in
Eqs.~12!, ~16!, ~30!, and~35!.
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The stopping power can be approximated in this case as
follows:

S05
1

3 S 2p D 1/2 1

lD
2 LS kmaxkD

D S vvTDF2S vvTD , ~16!

whereL(x) is the low-velocity collision logarithm

L~x!5
1

2 F ln~11x2!2
x2

~11x2!G ~17!

and

F2~x!5
3

x3 E0
x

z2expS 2z2

2 Ddz. ~18!

The functionsL(x) and F2(x) are shown in Fig. 1. In
particular, we find the following limits: F2(x)→1, when
x→0, andF2(x)→0, whenx→`.

For v!vT , kmax does not depend onv, and the depen-
dence of the stopping power with velocity is linear. A simple
result in this limit was first obtained for classical plasmas by
Spitzer@13#, namely,

S05
4

3
A2p

nv
~kBT!3/2

LS vT
3

ZvP
D . ~19!

This result is retrieved from Eq.~16! in the limit v!vT .
The functionxF2(x) in Eq. ~16! generates a maximum in

the stopping, similar to the high-velocity case of Eq.~12!.

B. Results of numerical integrations

We show in Fig. 2 the values of the stopping power for
protonsSp , in an ICF plasma, as calculated by the numerical
integration of Eq.~10! ~considered here as the exact values!,
and using the approximations discussed before. Thev.vT
andv,vT approximations are those given by Eqs.~12! and
~16!; they provide useful upper and lower estimations to the
exact values in the whole range of velocities.

The typical behavior of the stopping with velocity is ap-
preciated: a linear velocity dependence forv,vT ~Spitzer
regime!, a maximum atvmax;2vT , and a nearly quadratic
decrease with velocity forv.vT ~Bethe regime!. A charac-
teristic value for the stopping power is given by the value at
the maximum

Smax;S ZevP

vT
D 2;cs

4pZ2e4nP
kBT

, ~20!

where the coefficientcs varies weakly with density and tem-
perature~its value ranges between 0.8 and 2.5 for all the
cases studied here!.

It is of interest to compare the present results, using a
classical dielectric function~CDF!, with those calculated us-
ing the quantum random-phase approximation~RPA! @14–
16#. The CDF and RPA results nearly coincide for large
T/TF ~whereTF5EF/kB is the Fermi temperature! if one
uses the quantum value ofkmax from Eq.~7!. Figure 3 shows
the RPA results forv!vT and v@vT , according to Ref.
@16#, for the typical ICF andZ-pinch cases. The CDF and
RPA results for protons agree very well for these cases of
weak electronic degeneracy. However, the results forZ55,
where the classical value ofkmax must be used, show a sig-
nificant difference with the quantum calculations.

C. Analysis of collective and individual terms

In Fig. 4 we show the results of separate calculations of
the collective and individual contributions to the stopping
power for protons, as well as the total stopping, for different
plasma conditions. In each case, the exact calculations are
compared with the analytical high-velocity approximations.

FIG. 2. Comparison between analytical approximations and ex-
act integrations of stopping powers for protons. The circles show
the exact results obtained by integration of Eq.~10!. The dashed
and solid lines show the high- and low-velocity approximations of
Eqs. ~12! and ~16!. The approximations forv!vT ~Spitzer! and
v@vT ~Bethe! are also shown.

FIG. 3. Calculations of the stopping power termS0 in Eqs.~1!
and ~5! for ICF andZ-pinch plasmas, using the parameters from
Table I. The solid lines show calculations for protons using the
classical dielectric formulation with a quantum value forkmax; the
dashed lines show calculations for ions with effective chargeZ55
using the classical value ofkmax. The symbols show the results of
the quantum RPA calculations for low and high velocities.
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The simple approximation for the collective modes~dotted
lines! produces larger stopping values near the maximum, as
compared with the exact results, but the effect on the total
values is not very significant.

To illustrate more generally the relative significance of
collective and individual contributions to the stopping of un-
correlated particles, we plot the lines in Fig. 5, in thenP2T
plane, corresponding to constant values of the ratio

Scol

Sind
.
ln~bmax/lD!

ln~lD /bmin!

1

F2~v/vT!
.
ln~bmax/lD!

ln~lD /bmin!
, ~21!

~wherebmax5v/vP andbmin51/kmax!, for a particle with ve-
locity v55vT .

In general, we see from Eq.~21! that the contribution
from individual modes will be greater than that from collec-
tive modes if

G[bmaxbmin /lD
2 !1. ~22!

It can be seen that the importance of collective effects
increases with plasma density and decreases with tempera-
ture, being relatively more important for the case of ICF
plasmas~as is well known, collective terms play a very im-
portant role in solid-state plasmas@17#!.

This behavior may be simply explained as follows: tem-
perature increase the ratio between average kinetic energy
and interaction energy of the plasma particles. This shifts the
value oflD and then the individual terms increase with re-
spect to the collective ones.

As a corollary, this produces a significant departure from
Bohr’s equipartition rule, which states nearly equal contri-
butions from collective and individual stopping terms. This
rule applies to the stopping of particles in solids or in other
dense media. As can be observed from Fig. 5 the contribu-
tion from individual collision terms becomes the dominant
mode of energy loss for the case of single~or uncorrelated!
ions, through the whole range of plasma parameters of inter-
est.

IV. STOPPING OF A DICLUSTER

The energy loss of a pair of charges in correlated motion
~adicluster! shows some significant differences with the case
of uncorrelated particles discussed before. These differences
come from interference effects in the simultaneous interac-
tions of both particles with the medium@4,5#. For the range
of parameters previously considered, and internuclear dis-
tances of several atomic units, the interferences are generally
more important for the collective-interaction terms, than for
the individual ones. Therefore, the role of collective terms in
this case must be carefully reevaluated.

Let us consider now the interference effects in the energy
loss of a dicluster, formed by two particles in motion through
the plasma with velocityvW and internuclear distancerW. We
will assume that both particles have equal charges
Z15Z25Z.

Using the previous formulation, and following Ref.@4#,
the stopping power of a dicluster can be expressed as fol-
lows:

Sdicl52Z2@S01I ~rW !# ~23!

in terms of the stopping powerS0, defined in Eqs.~1! and
~5!, and with the interference functionI (rW) given by @4#

I ~rW !5S 1

2p2v D E dkW S kW•vWk2 D ImS 21

e~k,v!
D cos~kW•rW !.

~24!

The expected limits of the functionI (rW) and of the diclus-
ter stopping are the following:

FIG. 4. Collective and individual contributions to the stopping
power for protons in plasmas of various densities and temperatures.
The solid symbols show the exact values obtained by numerical
integration; the lines show the corresponding approximations, as
indicated in the inset.

FIG. 5. Study of the relative contribution of collective and indi-
vidual modes to the proton stopping power, for wide ranges of
plasma densities and temperatures, including the ranges of ICF,Z
pinch, and Tokamak plasmas. The individual type of interactions
are shown to be the dominant mechanism of energy loss through the
whole range of interest.
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~i! for r→0: I (rW)→S0 ,

and Scl→~2Z!2S0 ~one particle of charge 2Z!,

~ii ! for r→`: I ~rW !→0, andScl→2~Z2S0!

~ two independent particles of chargeZ!.

~25!

In the usual experimental situations the incident diclusters
are randomly oriented, so that one must take the average of
the interference term with respect to the angleu betweenrW
andvW . In this case one obtains

I ~r !5S 2

pv2D E0` dk

k S sin~kr !kr D E
0

kv
v dv ImS 21

e~k,v! D .
~26!

The case where the dicluster is oriented parallel to the
direction of motion has been studied previously by
D’Avanzo, Lontano, and Bortignon@18#. More recently, ori-
entational effects have also been studied@19#. These effects
may become important for longer time scales than those usu-
ally considered in ICF studies@3# ~for instance, they could be
important in the case of particle clusters injected in Toka-
maks!. In the following calculations, orientational effects
will be neglected.

Using the dielectric function for a classical collisionless
plasma Eq.~2! one can write the integral for the interference
term I (r ) as follows:

I ~r !5
2vP

2

pv2 E0
` k3dk

kD
4 S sin~kr !kr D E

0

v/vT
z dz

3S Y~z!

H S kkDD 21X~z!J 21@Y~z!#2D . ~27!

The integration over thek variable may be performed
analytically. After some algebra, one can express the func-
tion I (r ) as a single integral

I ~r !5
2

p S vP

v D 2S lD

r D E
0

v/vT
z dz Im@F~z,kmax,r !#,

~28!

where

F~z,kmax,r !5q$sin~qr !@Ci„~kmax2q!r …1Ci„~kmax1q!r …

2Ci~2qr !2Ci~qr !#1cos~qr !

3@Si„~kmax2q!r …2Si„~kmax1q!r …

22Si~2qr !#%, ~29!

with q[q(z)5kDAX(z)1 iY(z), and where Si(x) and
Ci(x) denote the sine and cosine integrals@20#. We will now
obtain approximate analytical results for the interference
term I (r ) in Eq. ~28!.

~a! High-velocity approximations. Using similar approxi-
mations to those considered in the preceding section, for the
case of ions with velocitiesv@vT , we can separate the con-

tributions from individual and collective modes, so that the
integral I (r ) can be approximated by

I ~r !.S vP

v D 2F I 1S vPr

v
,
r

lD
D u~v2vT!

1F1S vvTD I 1S r

lD
,kmaxr D u~kmax2kD!G

5I col~r !1I ind~r !, ~30!

where F1(v/vT) is the same function that appears in the
high-velocity stopping power formula Eq.~13! and

I 1~x,y!5E
x

yS sin~z!

z2 Ddz5H~x!2H~y!, ~31!

with H(x) defined by

H~x!5S sin~x!

x D2Ci~x!. ~32!

For v@vT ~x@1!, F1(x)>1, and we get

I ~r !>kmin
2 I 1~kminr ,kmaxr !, ~33!

wherekmin[1/bmax5vP/v. Therefore, the functional depen-
dence of the interference function in this approximation, in
terms of the beam-plasma parameters, is given only through
kminr andkmaxr .

For larger ~kmaxr@1!, the term withkmax in Eq. ~33! can
be neglected. This corresponds to the limit where the inter-
nuclear distance is sufficiently large with respect to the mini-
mum electron-ion distance of approach in closest collisions,
so that the two ions behave as independent scattering centers
for this type of short-range collisions.

In this case,I (r ) can be further approximated as

I ~r !.S 1

bmax
D 2Fcos~r /bmax!~r /bmax!

2 G . ~34!

Sincebmax5v/vP , we find that the temperature depen-
dence ifI (r ) disappears in this limit. The relevant parameter
here becomes the ratio between the internuclear distancer ,
and the wavelength of the wake potential:lwake
52pbmax52pv/vP . This represents the interferences be-
tween the wakes produced by each of the two particles,
which are separated by the distancer .

~b! Low-velocity approximations. Using now the approxi-
mationz!1 ~see Appendix! for the case of ions with veloci-
tiesv!vT , and integrating Eq.~27!, we get for the dicluster
a low-velocity approximation to the interference term,
namely,

I ~r !5S 2p D 1/2 1

3lD
2 I 2~r /lD ,kmax/kD!S vvTDF2~v/vT!,

~35!

whereF2(x) has been defined before@Eq. ~18!# and

I 2~x,y!5E
0

y

dz z3S sin~zx!zx D ~11z2!22, ~36!
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~I 2 can be solved in term of special functions, but a numeri-
cal evaluation is easier!.

Comparison of Eqs.~35! and ~16! shows that in this
limit the interference effects can be parametrized as
follows: I (r )/S05I 2(x,y)/L(y), with x5r /lD , and
y5kmax/kD .

In this case, the response of the plasma to the moving
particles is nearly static, and the dicluster ions are screened
by the plasma electrons according to Debye potentials.
Hence, interference effects will be important for separations
r shorter thanlD . The united-ions limit: I (r )/S0>1, will
be obtained for very small distances,r,bmin51/kmax @with
kmax given by Eqs.~6! and ~7! in the limit v!vT#.

A. Results of calculations

Calculations have been performed using the exact integral
expressions provided by the dielectric formulation. We have
used both a classical dielectric function and a quantum RPA
treatment@14–16#. We analyze here the dependence of the
interference term on the ion distancer , and on the dicluster
velocity v.

1. High velocities

The behavior of the interference termI is shown in Fig. 6,
for conditions corresponding to~a! ICF and~b! Z-pinch plas-
mas. The interference term has been multiplied by the factor
(v/vP)

2 in order to show similar scales in the ordinate axis;
we note however the very different scales~between the
Z-pinch and the ICF cases! in the abscissa values. The simi-
lar shapes of the results in both cases—~a! and~b!—suggest
the existence of a simple scaling rule, a point that will be

analyzed below. The figures show a very good agreement
between these results, using either a classical or a quantum
value ofkmax.

The ratioI (r )/S0 , between the interference and the stop-
ping terms, is shown in Fig. 7, for large velocities and small
values ofr . Here we find important differences between the
classical and the quantum choices ofbmin[1/kmax. This dif-
ference is produced by the dependence~on kmax! of the stop-
ping termS0 alone; i.e., the dependence ofI (r ) on kmax is
negligible~Fig. 6!, except for very small distances~r;bmin!
not shown here.

We find in these cases an excellent agreement with the
RPA results, provided that in the calculation of the stopping
termS0 the quantum value ofkmax

qm 52mv/\ @from Eq. ~7!# is
used@which in these examples is the correct value according
to the Bloch criterion Eq.~8!, sinceh,1 in the high-velocity
range#. Moreover, since Bloch criterion yields always the
smallest value ofkmax—and hence the smallestS0—the ratio
I (r )/S0 is always maximized.

2. Low velocities

For low velocities and larger values~respect tolD!, I (r )
tends quickly to zero, and it shows no oscillatory behavior
for very large distances. The difference between the classical
and the quantum cases becomes here more relevant, as
shown in Fig. 8, forZ55 in a dense plasma. The present
calculation coincides with the RPA results@14–16# when the
quantum value ofkmax is used. However, we should note that
in this case~h.1! the correct cutoff is given by the classical
valuekmax

cl 5kBT/uZue2 @from Eq.~6!#, which now yields much
larger values for the ratioI (r )/S0 , as shown in Fig. 8~b!.

B. Collective and individual contributions

In the range of high velocitiesv.vT the energy loss is
partitioned in individual and collective excitations. As dis-

FIG. 6. Calculation of the interference termI (r ) for the cases of
ICF andZ-pinch plasmas, using the values from Table I. The cal-
culations from Eq.~28!, using the classical dielectric function, and
using both classical and quantum values ofkmax @Eqs.~6! and ~7!#
are compared with the quantum dielectric formulation arising from
the random-phase approximation.

FIG. 7. RatiosI (r )/S0, between the interference and the stop-
ping terms, obtained from the integrations of Eqs.~28! and~10!, for
the ICF andZ-pinch cases of Table I. The calculations using a
classical and a quantum cutoff value forkmax are compared with
similar integrations using the RPA dielectric function.
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cussed before~cf. Fig. 5!, the contribution of collective
modes represents usually a small fraction of the stopping
termS. However, in the integration of the interference termI
the contribution of collective modes becomes very impor-
tant. We show in Fig. 9 the separate contributions from each
mode, I col and I ind, for internuclear distancesr5100 and
5000 a.u. We find that the contribution of collective modes
becomes most important for large internuclear distances. In

particular, the interference effect forr55000 a.u. is com-
pletely dominated by collective modes.

C. Scaling of the interference function

Let us finally consider a simple scaling property of the
interference functionI (r ) in the limit of high velocities. Ac-
cording to Eqs.~31! and ~33!, with bmax5v/vP

I ~r !5S vP

v D 2FHS rvP

v D2HS r

bmin
D G . ~37!

Due to the rapid decay of the functionH(x) for x@1, Eq.
~32!, in many cases we can neglect the second term
H~r /bmin! in Eq. ~37! ~this is particularly true for swift
atomic clusters, where the values ofr are of the order of a
few atomic units—or much larger if Coulomb explosion is
considered,—while the values of bothbmin

qm'\/2mv and
bmin
cl 'Ze2/mv2 decrease with velocity!. Therefore, we can ap-
proximateI (r ) in the limit r@bmin , by

I ~r !>S vP

v D 2HS rvP

v D . ~38!

To illustrate this relation, we show in Fig. 10 a set of
calculated values of (v/vP)

2I (r ), for different beam and
plasma parameters, including ICF,Z pinch, and Tokamak
plasmas. The values are rescaled in terms of the variable
x5rvP/v. The simple~asymptotic! approximation: H(x)
'cos(x)/x2 gives also very good results in this range ofx
values. Therefore, we can now explain the similarity noted
earlier, between Figs. 6~a! and 6~b!, as a consequence of this
scaling property.

The physical content of this property should be clear from
the previous discussions. For high velocities, the main scale
of distance is the characteristic length of the wake
lwake52pv/vP . Therefore, the ions interact appreciably

FIG. 8. Calculations of the interference termI (r ) @part ~a!#, and
ratios I (r )/S0 @part ~b!#, in the low-velocity range~v50.1vT!, vs
internuclear distancer , for correlated ions with chargeZ55. The
RPA results agree with those obtained using a quantum cutoff value
for kmax, but the correct results in this case are those corresponding
to the classical cutoff values@Eq. ~6!#, shown by solid circles.

FIG. 9. Collective and individual contributions to the interfer-
ence termI (r ) for internuclear distancesr5100 and 5000 a.u., as a
function of velocity. The collective contribution becomes dominant
for the largest distance.

FIG. 10. Scaling of the interference termI (r ), as predicted by
the high-velocity approximation of Eq.~38!, using the results of
numerical integrations of Eq.~28!, for ICF, Z pinch and Tokamak
plasmas.
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only at distances shorter thanlwake, and hence the interfer-
ence function scales in a general way with the parameter
2pr /lwake5rvP/v.

V. SUMMARY AND CONCLUSIONS

The energy loss of single and correlated ions in plasmas
has been studied both numerically and analytically for vari-
ous plasma conditions, showing in detail the influence of the
most relevant parameters. The use of a classical dielectric
function allows a simple integration of the stopping power
and interference terms. When the quantum cutoff value of
kmax is used in the dielectric formulation the results agree
very well with those obtained from the RPA model.

The use of a classical cutoff value (kmax
cl ) in the integrals

becomes more appropriate in the case of highly charged ions
at low velocities. Important differences may result from the
use of inadequate values ofkmax, specially in the evaluation
of the stopping terms.

The contributions arising from individual and collective
plasma modes were analyzed in detail. A more general study
of the collective resonances, as emerging from the classical
dielectric function, is included in the Appendix. Other con-
clusions of interest for the cases of single and correlated ions
are the following:

~a! Single ions. The separation of the energy loss in terms
of collective and individual modes was studied and previous
approximations were analyzed. We conclude that for a wide
range of plasma conditions, including the cases of ICF,Z
pinch, and Tokamak plasmas, the energy loss is dominated
by individual-collision terms. Therefore, Bohr’s equipartition
rule does not hold for the stopping power of nondegenerate
plasmas. In general, the contribution of collective modes in-
creases with plasma density, and decreases with temperature.

We find that the contribution from individual modes is
greater than the one from collective modes if

G[bmaxbmin /lD
2 !1, ~39!

wherebmax5v/vP andbmin51/kmax. This justifies the use of
kinetic-type formulations@9# whenG!1, because collective
modes can be neglected.

~b! Correlated ions. In the low-velocity case, the interfer-
ence effects are important only if the distances between both
ions is similar to, or smaller than, the Debye lengthlD . This
condition is satisfied very well in the case of molecular ions
injected in plasmas~for the three cases of Tokamak,Z pinch,
and ICF plasmas considered here!.

For high velocities, the interference function scales in a
general way with the parameterrvP/v. Since the value of
bmax increases with velocity, the interference effects will be-
come more important, and one can expect large collective
effects not only for clusters of ions, but also in some condi-
tions, for very intense ion beams.

The scaling properties of the interference effects and the
analytical approximations derived here may be useful to
study the collective effects in the energy loss of large ion
clusters@21#. Further calculations along these lines will be
reported in a separate paper.
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APPENDIX

In this appendix we summarize some properties of the
dielectric function of classical plasmas and discuss in more
detail the separation of collective and individual modes.

1. Dielectric function for a classical plasma

Following the usual approach@7,8#, the longitudinal di-
electric functione~k,v! is given by

e~k,v!511S 4pe2

k2
D E dveW S veW •kW

v2veW •kW1 ig
D S ] f 0

]Ee
D ,
~A1!

where Ee5mv e
2/2 and f 05 f 0(veW ) is the Maxwell-

Boltzmann distribution of electrons velocitiesveW . Using the
parametersvP , vT , lD , andkD from Eq. ~4! one finds@7#

e~k,v!511S kDk D 2WS ~v1 ig!/vp

k/kD
D . ~A2!

For g→0 ~collisionless plasma! the functionW(z) can be
expressed, in terms of the variablez5v/kvT , as follows:

W~z!5X~z!1 iY~z!, ~A3!

with

X~z!512z expS 2z2

2 D E
0

z

dx expS x22 D , ~A4!

and

Y~z!5S p

2 D 1/2z expS 2z2

2 D . ~A5!

2. Approximations for e„k,v…

In order to obtain analytical approximations for the en-
ergy loss and interference terms, simple expressions for the
energy-loss function Im[21/e(k,v)] become useful.

Using the variablez5v/kvT , the limits of interest are the
following:

~a! for z@1:

ImS 21

e~k,v! D>
p

2
vP@d~v2vP!2d~v1vP!#; ~A6!

~b! for z!1:

ImS 21

e~k,v! D>Ap

2 S kkDD 2H z exp~2z2/2!

@11~k/kD!2#2 J . ~A7!

Moreover, ifk@kD , this can be further approximated as:
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ImS 21

e~k,v! D>Ap

2

~v/vP!

~k/kD!3
expS 2z2

2 D . ~A8!

3. Dispersion relation for collective modes

Collective longitudinal modes in the plasma exist when

e~k,v!50. ~A9!

This defines a dispersion relation:v5v r(k), which in gen-
eral yields complex frequencies:v r(k)5v r1(k)1 iv r2(k).

Now, for the collective modes to be well defined, their
decay time must be much larger than the characteristic oscil-
lation time, viz.,

UIm@v r~k!#

Re@v r~k!#
U[Uv r2~k!

v r1~k!
U!1. ~A10!

The conditionuv r1(k)/v r2(k)u;0.5 defines a criticalk value
for collective modeskc , such that fork.kc only individuals
modes should be considered.

For a degenerate electron plasma~at T50! there exist the
real roots of Eq.~A9! for all values ofk smaller thankc ~with
kc;vP/vF!, and they become complex fork.kc @17#. In the
classical formulation, where Maxwellian-type velocity distri-
butions are introduced, Eq.~A9! has no solutions for real
frequencies, and hence plasmons are not sharply defined
modes. Nevertheless, Eq.~A6! still remains useful as a first
approximation.

A first step to obtain the dispersion relation in Maxwellian
plasmas is to assume a very small imaginary component

e2;0 and solve onlye1~k,v!50. This can be readily done for
small k (k,kD), such thatz5v/kvT;kD/k is large ande2
becomes very small@cf. Eq. ~A5!#. The behavior ofe1~k,v!
and e2~k,v! as a function ofv/vP , for fixed values of
k/kD50.05, 0.3, and 1, is shown in Fig. 11. Fork/kD50.05
and 0.3, the plasmon mode is located atv/vP>1, where in
fact e2;0 ande150. On the contrary, we see thate1~k,v! has
no zeros fork/kD51 @more precisely, one finds thate1~k,v!
has no real roots fork/kD.0.5336#.

More generally, exact solutions of the equatione~k,v!50
were obtained numerically. In this case one finds complex
frequenciesv r(k)5v r1(k)1 iv r2(k). The results of this
procedure are shown in Fig. 12, together with the usual ana-
lytical approximations.

For calculation purposes, it become useful to have simple
numerical approximations forv r1(k) andv r2(k). We have
obtained polynomial fittings to these solutions, in the form

v r~k!

vP
5(

i
ai S kkDD i . ~A11!

The coefficientsai of these polynomials are given in Table
II.

Finally, it is of interest to compare these results with the

FIG. 11. Behavior of the real and imaginary parts of the dielec-
tric function, vs the frequencyv, for three values of wave vectork:
~a! k/kD50.05,~b! k/kD50.3, and~c! k/kD51. In cases~a! and~b!
the plasma resonance occurs forv/vP>1 @when Re~e!50 and Im~e!
is very small# as indicated by the arrows. The real part ofe has no
zeros at any real frequency fork/kD values larger than 0.5336; this
is illustrated in case~c!, for k/kD51.

FIG. 12. Determinations of the resonance frequencies vs wave
vectork. The roots of Eq.~A9! were numerically evaluated obtain-
ing complex frequencies, shown here by open circles~real part! and
squares~imaginary part!. The small solid circles are the real roots of
e1~k,v!50. The solid lines show the polynomial approximations to
the real and imaginary parts, given by Eq.~A11! with the coeffi-
cients of Table II. The dashed lines show the analytical approxima-
tions to the real part, given by Eq.~A12!, and to the imaginary part,
given by Eqs.~A13! ~curve labeled a!, and~A14! ~curve labeled b!.

TABLE II. Coefficients of the polynomial fittings for the real
and imaginary parts of the plasma resonance frequencyv r(k) ac-
cording to Eq.~A11!.

Re@vr# Im@vr#

a0 1.0 0.016
a1 0.3 20.47
a2 1.2 1.72
a3 20.45 20.42
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analytical approximations tov r(k) obtained from a series
expansion of Eq.~A2! for v/k.vT , namely,@8,12#

v r1~k!56A113~k/kD!2vp , ~A12!

v r2~k!52S p

8 D 1/2 vp

~k/kD!3
expS 2

1

2~k/kD!2D .
~A13!

A slightly different approximation for the imaginary part of
v r(k) is the following @12#:

v r2~k!52S p

8 D 1/2 vp

~k/kD!3
expS 2

113~k/kD!2

2~k/kD!2 D .
~A14!

These expressions describe the so-called Landau damping of
plasma waves@8#.

We find from Fig. 12 that the approximation for the real
part Eq. ~A12! works well in an extendedk range ~up to
k/kD;1.5!, whereas Eqs.~A13! and~A14! for the imaginary
part deviate rather rapidly from the correct result. Therefore,
the polynomial approximation of Eq.~A11! gives, in all
cases, a more accurate result.

From these calculations we also find that the ratio
uv r1(k)/v r2(k)u becomes;0.5 fork/kD;1.2. Therefore, we
can conclude that the usual cutoff for the collective modes at
kc;kD , may be used as a good approximation to separate
the regimes of collective and individual excitations in the
evaluation of the stopping terms.
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